

Abstracts

Niobium Microbolometers for Far-Infrared Detection (Short Papers)

M.E. MacDonald and E.N. Grossman. "Niobium Microbolometers for Far-Infrared Detection (Short Papers)." 1995 Transactions on Microwave Theory and Techniques 43.4 (Apr. 1995, Part I [T-MTT]): 893-896.

Microbolometers have been fabricated using a thin niobium film as the detector element. These detectors operate at room temperature, are impedance matched to planar antennas, and are suitable for broad-band use at far-infrared wavelengths. We have achieved responsivities of up to 21 V/W at a bias of 6.4 mA, and electrical noise equivalent powers (NEP) of as low as $1.1 \times 10^{-10} \text{ W/radical Hz}$ at 1 kHz at a bias of 3.6 mA. At this bias, the detectors are 1/f -noise limited below 1 kHz and are Johnson noise limited above 10 kHz. The 1/f noise in nV/radical Hz increases approximately linearly with bias with a typical level of $0.39 \text{ fA over radical f(kHz)}$. This level of 1/f noise is approximately a factor of 7 below the best reported for bismuth microbolometers.

[Return to main document.](#)